不锈钢的切削加工特点

首页    技术文档    不锈钢的切削加工特点
 不锈钢的切削加工 HP =+<]?{G  
随着航空、航天、石油、化工、冶金和食品等工业的蓬勃发展,不锈钢材料已得到广泛应用,而不锈钢材料由于韧性大、热强度高、导热系数低、切削时塑性变形大、加工硬化严重、切削热多、散热困难等原因,造成刀尖处切削温度高、切屑粘附刃口严重、容易产生积屑瘤,既加剧了刀具的磨损,又影响加工表面粗糙度。此外,由于切屑不易卷曲和折断,也会损伤已加工表面,影响工件的质量。为提高加工效率和工件质量,正确选择刀具材料、车刀几何参数和切削用量至关重要。 PeT'^?>  
]! dTG  
  一、刀具材料的选择 9UkBwS`  
: 'c&,oLY  
  正确选用刀具材料是保证高效率加工不锈钢的决定因素。根据不锈钢的切削特点,刀具材料应具备足够的强度、韧性、高硬度和高耐磨性且与不锈钢的粘附性要小。 "{n&~H`  
:t[_: 3@  
  常用的刀具材料有硬质合金和高速钢两大类,形状复杂的刀具主要采用高速钢材料。由于高速钢切削不锈钢时的切削速度不能太高,因此影响生产效率的提高。对于较简单的车刀类刀具,刀具材料应选用强度高、导热性好的硬质合金,因其硬度、耐磨性等性能优于高速钢。常用的硬质合金材料有:钨钴类(YG3、YG6、 YG8、YG3X、YG6X),钨钴钛类(YT30、YT15、YT14、YT5),通用类(YW1、YW2)。YG类硬质合金的韧性和导热性较好,不易与切屑粘结,因此适用于不锈钢粗车加工;而YW类硬质合金的硬度、耐磨性、耐热性和抗氧化性能以及韧性都较好,适合于不锈钢的精车加工。加工 1Cr18Ni9Ti奥氏体不锈钢时,不宜选用YT类硬质合金,由于不锈钢中的Ti和YT类硬质合金中的Ti产生亲合作用,切屑容易把合金中的Ti带走,促使刀具磨损加剧。 Si7*& dw=  
-12U4h<e  
  二、刀具几何角度的选择 :U\tv[  
~?dI*BZ)]  
  刀具切削部分的几何角度,对于不锈钢切削加工的生产率、刀具耐用度、被加工表面粗糙度、切削力以及加工硬化等方面都有很大的影响,合理选择和改进刀具几何参数是保证加工质量、提高效率、降低成本的有效途径。 T+$[eWk"a  
b'g )  
  1. 车刀前角γ0的选择 .V qhV  
Y@v>FlqI{  
  前角的大小决定刀刃的锋利与强度。增大前角可以减小切屑的变形,从而减小切削力和切削功率,降低切削温度,提高刀具耐用度。但是增大前角会使楔角减小,降低刀刃强度,造成崩刃,使刀具耐用度下降。车削不锈钢时,在不降低刀具强度的条件下,应把前角适当取大一些。在刀具前角大时其塑性变形小,切削力和切削热降低,减轻加工硬化趋势,提高刀具耐用度,一般刀具前角宜取12°~20°。 Kq!3wb;  
ni<(K 0~  
  2. 车刀后角α0的选择 rjP/l6 ~'  
2eogY#  
  在切削过程中,后角可以减小后刀面与切削表面的摩擦。若后角过大,则楔角减小,使散热条件恶化,刀具刃口强度下降,降低刀具耐用度;若后角过小,摩擦严重,则会使刃口变钝,增大切削力,增高切削温度,加剧刀具磨损。在一般情况下,后角变化不大,但必须有一个合理的数值,以利于提高刀具的耐用度。车削不锈钢时,由于不锈钢的弹性和塑性都比普通碳素钢大,所以刀具后角过小会使切断表面与车刀后角的接触面积增大,摩擦产生的高温区集中于车刀后角,加快车刀磨损,降低被加工表面光洁度,所以车削不锈钢时的车刀后角要比车削普通碳钢时稍大一些,但后角过大又会降低刀刃强度,直接影响车刀的耐用度,因此,一般情况下车刀后角宜取6°~10°。 ;"I^ZFYX  
  jdN` mosJ  
  3. 车刀主偏角Kr的选择 #Z#-Ht  
Wqnc{oq |$  
  当切削深度ap 和进给量f不变时,减小主偏角Kr可使散热条件得到改善,减少刀具损坏,使刀具切入、切出平稳。但主偏角减小又会使径向力增大,在切削时容易引起振动。车削不锈钢的硬化倾向性强,易产生振动,振动又会使加工硬化严重。因此,主偏角一般宜取45°~90°。具体角度应根据机床、零件、刀具系统的刚性和切削用量来选择。 SM '|+ d  
?< />Z)  
  4. 车刀刃倾角λs的选择 J,hCvm  
c$,P ~W s'  
  刃倾角可控制切屑流向,当刃倾角λs为负值时,切屑流向已加工表面;当刃倾角λs为正值时,切屑流向待加工表面。为了使切屑不划伤已加工表面,在精加工时,刃倾角λs值为正值。当λs为正值时,刀尖强度低并首先接触工件,易损坏;当λs为负值时,刀尖强度高,耐冲击,可避免崩坏刀尖,切入、切出平稳,车削不锈钢时,一般刀具刃倾角宜取0°~20°。 > I?IPQB  
[GR; ?R5  
  三、切削用量的选择 <} .$l  
. vV|hSc  
  切削用量的大小对生产效率和加工质量有很大影响,因此在确定了刀具的几何参数以后,还要选定合理的切削用量。在选择切削用量时,应注意考虑以下因素:一是要根据不锈钢及各类毛坯的硬度等来选择切削用量;二是要根据刀具材料、焊接质量和车刀的刃磨条件来选择切削用量;三是要根据零件直径、加工余量和车床精度等来选择切削用量。同时为了抑制积屑瘤和鳞刺的产生,提高表面质量,在采用硬质合金刀具进行加工时,切削用量应比车削一般碳钢类工件稍低些,特别是切削速度不宜过高(vc=50~80m/min);切削深度ap不宜过小,以避免切削刃和刀尖划过硬化层,ap=0.4~4mm;因此进给量f对刀具耐用度影响不如切削速度大,但会影响断屑和排屑,拉伤、擦伤工件表面,影响加工的表面质量,进给量一般取f=0.1~0.5mm/r。 h\o.&6sd  
r" y.KD^  
  不锈钢尤其是奥氏体型不锈钢的塑性较好,在切削加工时,产生的切屑难以折断,加大了切屑与刀具前刀面之间的摩擦力,增大了切削力。同时,因加工硬化会增大被切削材料的硬度和强度,也导致切削力增大。为此,在合理选择刀具材料、刀具的几何角度和切削用量的基础上,对不锈钢和45钢做了切削力对比试验。试验结果表明,在相同切削用量的情况下,加工不锈钢时切削力比加工45钢时只增加了8.5%。 ;'|Ey  
khe}*y  
  合理选择刀具材料、刀具几何角度和切削用量,对于提高不锈钢切削加工的生产效率和加工工件质量是完全能够实现的。 N['  .BN  
<YY14p  
v+XJ*N[W  
wT@og|M  
3w=J'(RU  
w<#!h6Y=  
GOPfXtkC  
不锈钢的切削特点 wM n i  
不锈钢的切削加工性比中碳钢差得多。以普通45号钢的切削加工性作为100%,奥氏体不锈钢1Cr18Ni9Ti的相对切削加工性为40%;铁素体不锈钢 1Cr28为48%;马氏体不锈钢2Cr13为55%。其中,以奥氏体和奥氏体+铁素体不锈钢的切削加工性最差。不锈钢在切削过程中有如下几方面特点: K1K reYlF  
!0+JbZ<%r|  
    (1)加工硬化严重:在不锈钢中,以奥氏体和奥氏体+铁素体不锈钢的加工硬化现象最为突出。如奥氏体不锈钢硬化后的强度σb达1470~1960 MPa,而且随σb的提高,屈服极限σs升高;退火状态的奥氏体不锈钢σs不超过的σb30%~45%,而加工硬化后达85%~95%。加工硬化层的深度可达切削深度的1/3或更大;硬化层的硬度比原来的提高1.4~2.2倍。因为不锈钢的塑性大,塑性变形时品格歪扭,强化系数很大;且奥氏体不够稳定,在切削应力的作用下,部分奥氏体会转变为马氏体;再加上化合物杂质在切削热的作用下,易于分解呈弥散分布,使切削加工时产生硬化层。前一次进给或前一道工序所产生的加工硬化现象严重影响后续工序的顺利进行。 \e*]Ls#jS  
_>+Ld6.T6  
    (2)切削力大:不锈钢在切削过程中塑性变形大,尤其是奥氏体不锈钢(其伸长率超过45号钢的1.5倍以上),使切削力增加。同时,不锈钢的加工硬化严重,热强度高,进一步增大了切削抗力,切屑的卷曲折断也比较困难。因此加工不锈钢的切削力大,如车削1Cr18Ni9Ti的单位切削力为2450 MPa,比45号钢高25%。 Ml_^ `vn  
[y(MCf19  
    (3)切削温度高:切削时塑性变形及与刀具间的摩擦都很大,产生的切削热多;加上不锈钢的导热系数约为45号钢的1/2~1/4,大量切削热都集中在切削区和刀-屑接触的界面上,散热条件差。在相同的条件下,1Cr18Ni9Ti的切削温度比45号钢高200℃左右。 us-L]S+lm  
V[LglPt  
  (4)切屑不易折断、易粘结:不锈钢的塑性、韧性都很大,车加工时切屑连绵不断,不仅影响操作的顺利进行,切屑还会挤伤已加工表面。在高温、高压下,不锈钢与其他金属的亲和性强,易产生粘附现象,并形成积屑瘤,既加剧刀具磨损,又会出现撕扯现象而使已加工表面恶化。含碳量较低的马氏体不锈钢的这一特点更为明显。 X'ag)|5ot  
e~OpofJNb  
  (5)刀具易磨损:切削不锈钢过程中的亲和作用,使刀-屑间产生粘结、扩散,从而使刀具产生粘结磨损、扩散磨损,致使刀具前刀面产生月牙洼,切削刃还会形成微小的剥落和缺口;加上不锈钢中的碳化物(如TiC)微粒硬度很高,切削时直接与刀具接触、摩擦,擦伤刀具,还有加工硬化现象,均会使刀具磨损加剧。 ,tFg4k[  
[Xkx_B  
  (6)线膨胀系数大:不锈钢的线膨胀系数约为碳素钢的1.5倍,在切削温度作用下,工件容易产生热变形,尺寸精度较难控制。 Rq-ZL{LR7  
2017年3月2日 17:01
浏览量:0
收藏